
A High Level Cryptographic API for
PKI-Enabled Applications

Shu-jen Chang
NIST

shu-jen.chang@nist.gov
September 13, 2001

2

Overview
• Needs for a High Level API
• NIST CAPI
• Implementation Status
• Agency/Industry Adoption
• Future Work

3

The Challenge
• Multiplicity of Cryptographic APIs
• High Programmer Turnover Rate
• Vendor Support
• Complexity of Code

– Few understand the technology
– Too easy to make mistakes
– Complexity impedes development and analysis

of PKI applications

4

Benefits
• Easier to code, analyze, audit, maintain
• Provides better control
• Vendor neutral
• Easier to port applications since underneath

services have been checked
• Facilitates PKI application development
• Forces the PKI to do the heavy lifting

5

PKI Services API

6

NIST High Level CAPI

• SignBuffer
• VerifyBuffer
• EncryptBuffer
• DecryptBuffer
• CMSBufferParser

• SignFile
• VerifyFile
• EncryptFile
• DecryptFile
• CMSFileParser

7

• User login/logout
• Repository access, certificate/CRL retrieval
• Maintains user states, configuration

tables/files
• PKI Does the heavy lifting

PKI Support

8

• All calls made on behalf of one user identity
(one key) at a time

• Application allocates/deallocates memory for
I/O parameters

• Each function returns a return code and
additional error message

• Use data type SignedData and
EnvelopedData defined in CMS (RFC2630)

API Assumptions

9

Signature Generation - SignBuffer
int signBuffer(

IN uint32 data_length,
IN char* data_to_sign,
IN Boolean authent_required,
IN Boolean encap_data_flag,
IN/OUT uint32* signed_data_length,
IN/OUT SignedData* signed_data,
OUT char* error_data

);

10

Signing Operation
• Reauthenticate the user if requested
• Locate the signer’s key - prompt user to login

if not already logged in
• Generate digital signature over data provided
• Package signature and other information in

CMS SignedData format
• Return success or error code to application

11

Signing Operation
• One signature for each invocation, repeat

calls for multiple signatures
• Receiving party usually receives all the

information needed for signature verification,
though signed content can be omitted from
resulting signature structure (SignedData). In
this case, application should maintain
association between content signed and the
output SignedData.

12

• CMS version
• Digest algorithm
• Encapsulated content
• Certificates (Optional)
• CRLs (Optional)
• Signer Information

SignedData

13

Signature Generation - SignFile
int signFile (

IN char* infile,
IN Boolean authent_required,
IN Boolean encap_data_flag,
IN Boolean output_to_file,
IN char* outfile,
IN/OUT uint32* signed_data_length,
IN/OUT SignedData* signed_data,
OUT char* error_data

);

14

Signature Verification
int verifyBuffer(

IN uint32 signed_data_length,
IN SignedData* signed_data,
IN ushort policy,
IN uint32 data_length,
IN char* data_to_verify,
OUT char* signer,
OUT GeneralizedTime time_data_signed,
IN/OUT uint32* output_data_length,
IN/OUT char* output_data,
OUT char* error_data
);

15

Signature Verification
• Parse DER-encoded signature data, check

required policy if any, verify signature
• Return the following if signed_data is

parseable or signature is verifed:
– signer informtion
– time data was signed
– data that was signed
– error message (if verification failed)

16

VerifyFile
int verifyFile (

IN char* file_signed,
IN char* signature_file,
IN ushort policy,
OUT char* signer,
OUT GeneralizedTime time_data_signed,
OUT char* error_data

);

17

Buffer Encryption
int encryptBuffer (

IN char** recipientlist,
IN uint32 data_length,
IN char* data_to_encrypt,
IN ushort encryption_algorithm,
IN Boolean authent_required,
IN/OUT uint32* enveloped_data_length,
IN/OUT EnvelopedData* enveloped_data,
OUT char* error_data

);

18

Encryption
• A message may be encrypted for multiple

recipients with one call using the same
symmetric encryption algorithm

• Operation is more complicated than signing
due to key management choices
– key agreement
– key transport
– key encrypting key

19

Encrypt Operation
• Locate & validate recipient’s encryption/key

agreement certificate
• Generate session (symmetric) key, protect it

using selected key management mechanism
• Encrypt data buffer under the session key

using specified encryption algorithm
• Encode ciphertext and needed information

for recipients to decrypt in EnvelopedData

20

EncryptFile
int encryptFile (

IN char** recipientlist,
IN char* file_to_encrypt,
IN ushort encryption_algorithm,
IN Boolean authent_required,
IN Boolean output_to_file,
IN char* encrypted_file,
IN/OUT uint32* enveloped_data_length,
IN/OUT EnvelopedData* enveloped_data,
OUT char* error_data

);

21

EnvelopedData
• CMS version
• Originator info OPTIONAL
• Recipient infos
• Encrypted content info

– Content type
– Content encryption algorithm identifier
– Encrypted content OPTIONAL

• Unprotected attributes OPTIONAL

22

Buffer Decryption
int decryptBuffer (

IN uint32 enveloped_data_length,
IN EnvelopedData* enveloped_data,
IN Boolean authent_required,
IN/OUT uint32* plain_text_length,
IN/OUT char* plain_text,
OUT char* sender,
OUT ushort* encryption_algorithm,
OUT char* error_data

);

23

Decrypt Operation
• Enveloped_data contains everything the

recipients will need for decryption
• Authent_required flag

– Used only if key agreement/transport is involved
– Indicates whether to reauthenticate before a user

can use his private key to decrypt protected key
• Returns plain text, sender information,

encryption algorithm, or error message

24

File Decryption
int decryptFile (
IN char* encrypted_file,
IN Boolean authent_required,
IN char* plain_text_file,
OUT char* sender,
OUT ushort* encryption_algorithm,
OUT char* error_data
);

25

• Not a crypto. function, but useful to have
• Similar to the S/MIME feature
• Allows application to obtain signer

information and signed content without
signature verification

• Returns signer information, time data was
signed, signed content, or error message

CMS Parser

26

int CMSBufferParser (
IN uint32 signed_data_length,
IN SignedData* signed_data,
OUT char* signer,
OUT GeneralizedTime time_data_signed,
IN/OUT uint32* content_length,
IN/OUT char* content_signed,
OUT char* error_data
);

CMSBufferParser

27

CMSFileParser
int NIST_CMSFileParser (

IN char * signature_file,
OUT char* signer,
OUT GeneralizedTime time_data_signed,
OUT char* error_data

);

28

API Status
• API specification available at:

http://csrc.nist.gov/pki/pkiapi/welcome.htm
• Currently under review
• Implementation started at NIST and FDIC

29

• Ongoing implementation built on top of
Entrust Toolkit

• Possible second implementation on top of
MS CAPI

• A high assurance financial application will be
developed to use NIST CAPI for GAO
sanctioning

FDIC Implementation

30

NIST Implementation
• Built on top of S/MIME Freeware Library

(SFL) and CML
– http://www.getronicsgov.com/hot/sfl_home.htm
– http://www.getronicsgov.com/hot/cml_home.htm

• Started in summer 2001
• Currently finishing code for signing and

verification

31

Agency/Industry Adoption
• Several agencies are interested in NIST CAPI

for their PKI applications
• Many have legacy applications to transistion

to use new technologies
• Assistance is needed for such transitions
• Agencies are participating/modeling after the

FDIC effort
• Industry buy-in more difficult but desirable

32

Future Work
• Functions to support CA/RA operations

– PKI Specifications to Support the DOE Travel
Manager Program, August 1996

• Mechanism to support web-based
applications

33

More Information
• NIST PKI API page:

http://csrc.nist.gov/pki/pkiapi/welcome.htm

• Send comments to:
– Shu-jen Chang (shu-jen.chang@nist.gov)

